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Abstract—This theoretical investigation is concerned with stress distribution in the vicinity of the vertex of
an orthotropic elastic orthogonal wedge subjected to admissible boundary conditions. By admissible
boundary conditions it is meant that the normal and tangential boundary conditions N(s) and T(s),
respectively, are such that fo'[N(s)P ds and [3°|T(s)P ds are finite. The axes of the orthotropy of the wedge
are assumed to coincide with axes of the coordinate system. In this analysis, Fourier-Planchere! integral
transform is used to solve the boundary value problems of orthotropic elastic half plane and to solve a
system of integral equations for which the kernels k;(, s}, i = 1,2, do not satisfy the necessary Fredholm’s
alternative

f’f'uqu,s)lldcdmw, i=1,2
0 Jo

The problem of elastic orthotropic orthogonal wedge is divided into four basic problems each of which
is characterized by relevant generalized Green's functions. These generalized Green's functions are
evaluated analytically as well as numerically. Knowing these generalized Green's functions, special formula
is developed to calculate the stresses at any given point in the wedge for any arbitrary admissible boundary
conditions.

A special form of Filon's method is used to evaluate improper integrals with rapidly oscillating
integrands. The whole procedure of calculating stresses is illustrated by an example.

1. INTRODUCTION
Generally, the stress problems of infinite isotropic wedges, loaded in their plane are solved with
the aid of polar coordinates using Mellin transform. Tranter[1] and recently Bogy([2] have
analysed isotropic wedges using Mellin transform. On the other hand, Hetenyi[3] showed that
for an isotropic quarter plane, the stresses distribution can be obtained by repeated super-
position of known solutions of elastic half plane. He developed an algorithm to obtain the
solution. Although these procedures gave satisfactory results to the problem, they cannot be
easily extended for further problems of wedges without tedious work. For example, when the
material is anisotropic and when the body forces and dynamic forces have to be taken into
account these methods become extremely difficult to handle. Moreover, there is no simple way
to get results of other problems of wedges without repeating the entire procedure. So, in this
paper, it is shown that a more general problem of orthotropic wedge can be simply analysed by
using Fourier-Plancherel integral transform and obtaining a set of simultaneous integral
equations, the solution of which is obtained analytically. And this method of solution is much
more general than other methods mentioned previously.

In Sections 2 and 3 a two dimensional boundary value problem for the elastic orthotropic
orthogonal wedge is formulated. Fourier-Plancherel integral transform is used to obtain a stress
function for an elastic orthotropic half plane. Also, the normal and tangential stresses at any
point in the half plane is calculated. In Section 3 the problem of the wedge is divided into four
basic problems and a detailed derivation of the method of solution is presented. The generalized
Green'’s functions for each of the above-mentioned problems are obtained. It is also shown that
this basic solution can simply be extended to other problems of the wedge by simple
integration. Finally, the numerical results are shown.

2. FORMULATION AND SOLUTION OF BOUNDARY VALUE PROBLEM FOR ORTHOTROPIC
HALF PLANE

The solution of the boundary value problem for an orthotropic half plane will be a suitable
and convenient means of investigating the stress and strain distribution in an orthotropic elastic
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orthogonal wedge. Therefore, it is necessary to give a formulation and a brief abstract of the
solution of boundary value problem for the half plane.
It is shown in[4] that the stress function w(x, y) satisfies the following equation,

3w 3w 3w
ap—V—7 ax 2026-—'3—'+ (2012 a“) zay 20]6 axay3 + a7 6)’4 =( (])

for the most general anisotropic elastic medium in the given domain, where

&w _ *w _ Pw @)
ay? Oo g2 = axay Ty

The coefficients a;’s are the material constants. It can be shown[4] that in the case, when axes
of orthotropy coincide with axes of coordinate system, only a,;, @;2, 83;, a3 and ag are nonzero
coefficients and a;, = a,,. Under these conditions, the general eqn (1) reduces to

3w I*w
G +(2012+066)"9'3‘Té')‘,7+ an—=z e =0. (3)

A boundary value problem will be formulated for the eqn (3) in half planes P, and P,, where

P,=(x,y; x>0, ~»< y<w)

P,=(x,y; —o<x<w, y>0).

Let the constants a,,, a;3, a;;, 85 and ag be given such that:

(i) a,;, ax, and ag are positive, a,, is negative and a,, is equal to a,;;

(ii) (2412 + agg) > 2V(a;,a20) > 0. Let the functions n,(s) and £,(s) be given such that;

(iii) n,(s) = n, (- s) i.e. symmetrical;

(iv) £,(s) = — t,(- 5) i.e. antisymmetrical;

(v) n.(s) and #,(s) belong to L,(0, ).

The given functions n.(s) and f,(s) are called normal and tangential boundary conditions
respectively.

Let us denote

(vi) f) = L (v - )ny(s) ds @)
(vii) g(y) = fo " 1(5) ds. )

The boundary value problem for the eqn (3) in half plane P, is to determine the stress
function w,(x, y) such that the following conditions are satisfied:

(viii) w,(x, y) is defined in P, and it has at least four continuous derivatives in P, with
respect to x and y;

(ix) w,(x, y) satisfies the eqn (3) in P,.

The boundary conditions should be satisfied in the following sense

x) lim f (we(x, y) - f:(»)Fdy =0

(xi) lim | aw,(x, el ) 4 ol dy=0
x-0 a

(xii) lim ) _Iwix, )P dy =0

(xiii)

l'm

X0

aw,(x y)| dy =0,
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Positive constants M and N exist such that the following inequality is satisfied in P, and on
the boundary

. k
(xiv) li’—;";%"y—,ﬂl <Me M j+j=k k=0,1,2,3,4.

It can be shown that there exists one solution of the formulated problem. This solution
belongs to Ly(P,). By the term, one solution, we mean that the stress field is unique.

Formally, let us assume that the functions w,(x,y) belongs to L,(—c, ) for arbitrary
x{0<x<>),

Multiplying the eqn (3) by e and integrating the products with respect 1o y over the
interval {— =, ) we obtain an ordinary differential equation for W,(x, a)

a22%‘¥’—‘~(2a,,+ a“)az-d;—:vf+ aya*W,=0 ©)
Let
0= \/ ((Zan +8g) + \/((22:;, + age) — 4a, ,au))
b= \/ ((2012 + age) — \/((220:2 + ag) —4031022)) ?
an
and consequently,
a>b>0
The general solution W,(x, a) of the eqn (6) is given by the following formula
W.(x, a) = ¢, e*b + ¢, g%l 4 ¢y gblol 4 ¢, gmblab ®

Using Parseval’s equality the conditions (xi)-(xiv) the constants can be evaluated and (8) is
simplified as

1
(a—b)

Wilx, a)= {{a g-blalx _ p e-ata}x}l;;(a) + {e-aiafx - e-wa} G}ir)] ©)

where F,(a) and G,(a) are Fourier-Plancheral transform of f,(y) and g,(y) respectively. Since
all the conditions for convolution are satisfied, the inverse function w,(x, y) of W,(x, ) can be
obtained in the following form

ab(a +b) J'“ Xfils)ds
7 J{ax T+ (- sPHb X+ (y - 51

e oL (%:;f:—,’:%}i—;i) ds.

wi(x, y) =

(10)

A similar procedure as given above can be followed to get the solution of the problem in
half plane P, We find the solution has the following form

_mn(m+n) (" Yfis)ds
wy(x, y) pm L {x— s+ miyH(x - sy + niy} (mn
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where

fi0= [ x-m(s)ds
g,(x)= L t,(s)ds. (12)
The functions n,(s) and t,(s) are given normal and tangential boundary conditions respectively,

m=— and n=

S|
0 |-

The stress components are evaluated as
) _abla+b) [~ x’n,(s)ds
T e AR G- T O - )

+(a+b) = xXy - s)t,(s)ds
m Ja{a*+(y = sPHbAxT +(y - 5V}
. _abla+b) [~ x(y - s)’n.(s5)ds
e x, y) = . ],,,{azx2+(y-s)’}{bzx7+(y—s)z} (13)

+(a+b)r (- s)L(s)ds
7 J{@? X+ (y— )b +(y - 5))

For half plane P, we have

y _mn(m+n) [~ y(x = 5)*n,(s) ds
U'S: )(x, y)= _,{(x—s)2+m2y7}{(x—s)"+ nfﬂ
+(m+n)J’°° (x =)t (s)ds
) f{(x = 5)+ m*y(x - s+ n%y}
O’U)(X ) - mﬂ(m -+ n) = y3ny(s) ds (14)
yA%y —{(x = 5} + m*yH(x - s + n*y})
Lmn [” x2(y — $)t,(s)ds
7 ) {(x—s¥ +miy Hx - 5)* + ny?)

3. FORMULATION AND SOLUTIONS OF THE BASIC PROBLEMS FOR ORTHOGONAL
WEDGE P,

To obtain a solution of stress distribution for orthotropic orthogonal wedge loaded by
general admissible boundary conditions directly as a whole is difficult. Therefore, we split the
problem into basic problems. I and II, which are shown schematically in Figs. 1 and 2. Problem
I can further be subdivided into problems A and B and the problem II can be similarly
subdivided into C and D as shown in Figs. 1 and 2. In this section, exact theoretical solutions of
these basic problems for all admissible boundary conditions will be given. By the term
“admissible” we mean the following. If n(s) and #(s) represent normal and tangential boundary
conditions respectively, then these conditions are admissible if functions n(s) and #(s) satisfy

r [n(s)Fds <
]
f: [t(s)P ds <co.

It should be noted that Dirac delta function also represents an admissible boundary condition.
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Fig. 2. Probiem I1. Tangential boundary conditions.

The detailed derivation of the method of solution for the stress distribution for problem A
will be given step by step. For problems B, C and D the same can be used.

Let us cut the symmetrically loaded half plane P, along the axis of symmetry Ox, (Fig. 3)
and let us keep the upper portion. Only normal parasitic stress is present along this axis and the
distribution of this stress is given by

o =¢Kn, (15)
where

Knz J: ko(x, s)n(s)ds, 0<x <o,

_ xs2
ko(x, 5)= (a*x2+ s*)(b*x* + §%)

_2abla+b)
===

, a>b>0.

Let us cut the half plane P, (Fig. 4) along the axis of symmetry Oy, and let us keep the right
quarter plane. Only normal parastic stress is present along this axis and the distribution of this

stress is given by
o =c,Qn, (16)

where

Qn, = L i ao(s, y)n,(s)ds

- ys?
q(s, y) C+miy s+ ny)

2mn(m +n
cz=.—_(.—), m>n>0_
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A I

Fig. 3. Half plane P, subjected to symmetrical normal boundary condition.

Fig. 4. Half plane P, subjected to symmetrical normal boundary condition.

Superposing the two wedges with parasitic stresses, we obtain for P,, (Fig. 5)

(l,:{n,—%c,Knx on Ox an
" im+cQn, on Dy.

Let us assume that there exist two symmetrical functions ¢o*(y) and go*(x) from L,(0, =).
Let us carry out the same operations as described above for half plane P, and P, and we obtain

o [ht+tceXe* on Ox
on {¢0‘+c20clfn‘ on Oy. (18)

With these four half planes superposed one over the other, we obtain the following relations
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Fig. 5. Quarter plane P,, subjected to normal boundary condition.

on the boundaries of P,,.

o = { n+cKn, + y* + ¢;Kg* on Ox (19
", +c,Qn,+ ¢ +c,Qe* on  Oy.

These two relations (19) will satisfy the prescribed boundary conditions if and only if the

unknown functions @¢*(y) and ¢u*(x) are the solution of following system of integral equations

Yot +cKpe? =—cKn, on Ox

(20)
¢¢* = +c,Q¢* =-Qn, on Oy.
Problem A is to determine functions ¢o* and yo* (from L,(0, )) which are the solution of the
system of integral eqns (20). It should be noted that for the system of integral eqns (20) the
Fredholm’s alternative is not satisfied, Therefore, the usual method of successive ap-
proximation cannot be used and a new approach must be followed.

It is shown in the Appendix that the system (20) for the given admissible functions n, and n,
has a unique solution ¢,* and ¥;* which belong to L(0, ®). In a similar manner as given above
for the problem A, the relevant problems B, C and D can be formulated and the solutions ¢,
Wo®, &S, heC, do” and Y can be obtained.

4. GREEN'S FUNCTIONS

In previous section, we have determined the solution of the problem of stress distribution in
the wedge for general admissible boundary conditions. It should be noted that for each
admissible boundary condition, the same procedure must be repeated, i.e. the system of integral
eqns (20) must be solved numerically for each of these different boundary conditions. To avoid
this necessity of solving the system of integral equations, we will show a new method to modify
the previous procedure. This modification will be shown only for the problem A. It is similar for
problems B, C and D.

Let us solve the problem A for special boundary conditions which are prescribed in the
following form,

n(s)=n,(s)=Pé(s-1); (P>0,0<s<w)
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where 8(s — 1) is the Dirac function. It is a concentrated force P acting at unit distance from
the vertex in positive direction (See Fig. 1).
With these above boundary conditions the eqns (20) become

N T 1sgfs)ds it
() + ¢ o ([@EF B+ (@ DB+ )
80+ ¢ st (s)ds Caf @

o (@0 F )BT+ @O+ )by
The solution yi*(f) and ¢o?(t) of the system of integral eqns (21) is called Green's function for
the problem A.

Let us solve the problem A for the boundary conditions,

n(8)=ny(s)=Pé(s—s,); P>0, s.#1

where P§(s — s,) is a concentrated force P acting at a distance s, from the vertex.
The eqns (20) become

Yot (1) + ¢ J' 15"y (s) ds citsd
0 1 0 (a2t2+ s2)(b2_r+ sZ) (02t2+§2)(b2t2+ SIT)
ts llloA(S) ds Cztskz

s+ [ o @)

EHsNOTHsD) @+ s+ 5
Introducing new variables

t
a=—, 0<a<w

Sk

p==,0<p<e
Sk

the eqns (22) after this substitution become
0 ( [ sk) d
s )+ ¢4 j 'E%%?%’}%Zﬂ%f “{d%a? ¥ ﬁ’)(bzaz +8)
Q o y Sk) d - (14
skd’OA(a, sk)+ C2J; (a o +B (b o+ B )— (02a2+32)(b202+ BZ) (23)

Comparing (21) and (23) we observe that the functions

=Lya(L
Wi =1ut(£)
24
1 t
840 = (L)

where ¥24(1) and $4;(¢) are the solution of the system of integrals eqns (23) for the problem A
with symmetrical normal boundary conditions. It must be noted that (24) gives a relationship
between the Green's functions and the new functions for which boundary conditions are
prescribed. Once the Green's functions o*(¢) and @o*(¢) are calculated numerically then the
functions Y&(?) and ¢&(¢) can be evaluated by simple division. When the functions ¢ () and
4.(t) are known then the stress at any point in P,, for the problem A with the prescribed
boundary conditions can be calculated.

In the case of any general admissible symmetrical normal boundary conditions n,(s)=
n,(s)= h(s) from L,(0,) for the problem A, relationships similar to (24) can be obtained.
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These relationships are given by
= [ At ds
tﬁ‘&*(f)—L Yo (S)nx(s) S
s8u0= [ 60t ({)n 0% 0<i<e 25)
0 M s

where ¢3.(f) and ¢4, are the solution of the system of integral eqns (20) with any arbitrary
admissible boundary conditions. When these functions are known the stresses at any point in
P,, can be evaluated.

5. DISCUSSION OF THE RESULTS AND CONCLUSIONS

An exact theoretical solution for the stress distribution in the vicinity of the corner of an
orthotropic wedge subjected to general admissible boundary conditions from the Lebesque
space L,(—», ®), the definition of which is given in Appendix-A, has been presented here. First,
the general problem was divided into two main parts, (i) wedge subjected to normal boundary
conditions and (ji) wedge subjected to tangential boundary conditions. The Green’s function for
parts (i) and (i) are obtained as a solution of a special system of integral eqns (20). In solving
this system of integral equations the method of Fredholm or successive approximation could
not be used since the Fredholm’s alternative (see Appendix B) is not satisfied for this system.
So a special method described in Appendix B has been used. Basically, Fourier-Plancherel
integral transform technique (refer to Appendix A for definition) has been made use of in
solving the system. The Fourier~Plancherel transforms of the kernel functions of this system of
integral equations are evaluated using the well-known theory of residues. The detailed
derivation of the transforms of kernel functions for both normal and tangential boundary
conditions, is shown in Appendix C.

In the numerical evaiuation of Green’s functions, i.e. eqn B19, improper integrals with
range of integration (0, ) are encountered. This range (0, «) is divided into two parts (0, A) and
(A, =), where A is a suitably chosen quantity. A is chosen such that the integral over the second
range (A, »), is ngligible. In these calculations A is chosen as 12.0. For the range (0, A) ordinary
quadrature formulae such as Simpson’s could not be used because the integrands of these
integrals are rapidly oscillating functions. Therefore, numerical integrations have to be per-
formed using a modified form of Filon’s method[6]. All these Green's functions thus evaluated
for problems A, B, C and D for symmertical boundary conditions are shown in Figs. 6-9
respectively. With the aid of these Green's functions, formulae (eqn 25) for more generalized
problem of wedge with arbitrary boundary conditions are developed. Using these formulae the
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Fig. 6. Green's function gy* for half plane P, (symmetrical normal boundary condition).
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Fig. 7. Green's function go* for half plane P, (symmetrical normal boundary condition).
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Fig. 8. Green's function ¢ for half plane P, (symmetrical tangential boundary condition).
08
[ 1 ’
06 P \
1

\\\

(4
@ 04

0.2

P

|

05
t

o] 02 0.4

Fig. 9. Green’s function ¢,C for half plane P, (symmetrical tangential boundary condition).

stress at any point in the wedge for all admissible arbitrary boundary conditions is very easily
calculated. These formulae are of much use to design engineers in analysing wedge problems.
These formulae enable them to calculate the stresses without really going through entire
analysis given here for each different kind of boundary conditions.

This whole procedure of calculating the stress distribution in the wedge is illustrated by the
following example. In the orthogonal wedge which is loaded by a concentrated load acting at a
unit distance from the vertex on one face and the other face free from external loading, the
stress distribution in the vicinity of the vertex (Fig. 1) is determined. For the wedge with elastic
constants a > b the boundary stress along the free face is calculated and the results are shown
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Fig. 10, Stress along the edge in a quarter plane,

in Fig. 10. It can be seen (from the relevant Green's functions) that the stress along the free
face near the vertex changes its sign many times. The magnitude of this stress in first reversal
of sign is not small. Its value is about 12% of the applied load on the free face. This may be of
considerable importance in certain applications.

The method of approach used in this investigation and the solution obtained for the basic
problems are fundamental, since a large variety of problems in orthotropic elastic wedge can be
solved in a much simpler way by combining these basic solutions and performing a simple
integration. In addition, this approach is not limited by the arbitrariness and position of
application of boundary loads except these boundary loads must be admissible.

This method can be effectively modified for the analysis of stress distribution in an infinite
wedge of any angle w, providing 0 < < . A similar approach can be used in three dimensional
problems. Thermal problems for the above sector domains can also be investigated using
foregoing procedure,
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APPENDIX A
Fourier-Planchere! transforms
The theory of Fourier-Plancherel transform is well known as providing techniques for solving boundary value

problems. The important theorems, which are used to transform a given problem into a relatively simple one, are
summarized below.

We say that f(x) belongs to Ly{(~»,x) if f(x) is measurabie and

f [P dx < . (Al

By

fim f " fx, a)dx

we denote a function F(a) such that

* w
lim | [Floll-| lftx,a)dxfda=0 A2)
Wt f o - (
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Let ¢(x) be a real function such that [=. |¢(x)]? dx <=. Consequently, a function ®,,(a) exists in L,(~ =, ®) such that
tim [ 10.(a)- ®(a)f da =0 ()
where
O, (a)= f: d(x)e™™ dx. (Ad)

This limit is called Fourier-Plancherel transform of ¢(x) in Ly(—, x).
An inversion formula exists in Ly(— «, ®) such that

li_r_rl f |¢(x)~ ¢ ()P dx =0 (AS)
where
| .
dulx)= In I_ P(a)e™ da. (A6)

The limit (AS) can also be written in the following form
$)= lim % ]_: (o) e da (A7)

The Parseval's equality in the class Ly( ~=, =) is given by

= 1=
J’_. [p(x)P dx = 7 L' ()} da (A8)
Let h(x) belong to Ly(~=, =) and L (~ e, ). In addition, let ¢(x) belong to L( - =, x); then the function
1= [ hx-9gts)ds (A9)
belongs to Ly(~c, =) and
Fla) = H(a)¢(a). (A10)

The function f(x) is called convolution of A(x) and ¢(x).
Note that the original functions are represented by the small ietters and the respective Fourier-Plancherel transforms
are given by the capital letters.

APPENDIX B

Solution of special system of integral equations
The solutions of basic problems A, B, C and D depend on the behaviour of the following system of integral equations
with two unknown functions o and ¢,

wlt) + L " kalt, $)dhols) ds = folt),

8o0)+ [ adt, Wols) ds = holt), 0< 1< ®1)
where, for normal boundary conditions, the Kernel functions have the following form
_2ab(a+b) 15? .
kit, 5) == ey 4700 (B2)
2
qolt, s)=2m"(m+") 3 a>b>0 (B3)

7 (M + s+ 5h)

fot) and ho(t) are given functions from Ly(—«,»).
Since

I: f: lkelt, $)P d1 ds = o

J: J: [qo(t, S)P deds = o

the Fredholm’s alternative is not satisfied.
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First of all, we must prove that the operator

Kogo ™ L " kelt, Shga(s) ds (B4)

transforms Ly(0, x) into itself, i.e. we must prove that Kug, belongs to La(0, ) for go(s),L5(0, =).
Using the facts that

f ko{t, s}ds = ¢; <

0
Jmko(t.s)dt=c,<w
0

and Schwarz-Bunyakovskii inequality, it follows that

[ L - kolt, 5)golS) d.s}z <S¢ L ) kolt, $)g¥(s)ds (BS)

After integrating the inequality (BS) with respect to ¢ over the interval (0, ) we obtain

j: U: ko(t,ﬂgo(.f)ds]zdt s¢ I: j: ke(t, $)go(s) ds dt

<¢ ]; " gik(s) L "kt ) ds < 1 L " goi(s)ds. (B6)

Therefore, the last inequality becomes

fo (KogoP ds < ¢y, j; &(s)ds (B7)
and since go{s) belongs 1o Ly(0, ) it is seen that the operator (B4) transforms L,(0, ) into itself; this completes the proof.
Note
For tangential boundary conditions the kerne! functions have the following form:

_a+b) $ .

ki, sy = @i sy 0<t s<®» (B8)
_Am+n) s .

ab(t ) PR 1% g 7 ) U >n>0. (B9)

For this case, a method similar to that given above can be followed to prove that the operator (B4) for m>n>0
transforms L,(0, ®) into itseif.

Method of solution
Before solving the system of integral eqns (BI) we will transform this system into a convenient and suitable form.
Let

t=¢°, s=¢" (B10)
then the following relation is valid

f " e de= j T bde) e dv.
] -
Denoting
d(1) = dole”) e*? (B11)

we find tbat'fmgction &(v) belongs 10 Ly(0, ). Similarly, it can be shown that the function ¢, f and & belong to L,(0, ),
By substituting &, ¢, f and & into (B1) we finally obtain the following system of integral equations

o)+ L k(o - u)(u) du = f(v),

80+ [ go-uphu) du = hio) ®12)
where
k _ e()l!)(v-n}
=)= Ty 1 )
(3/2)v~u)
qv-u)= d+m e“s“")(l iy (B13)

§S Vol. 17, No. 5-E
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Since both the functions ¢ and ¢ and the kernel functions (B13) satisfy the conditions of convolution theorem, the
Fourier-Planchere] transform theory can be used. By transformation, the system of integral eqns (B12) become

Yo} +K{a}bia) = F(a)
Pla)+ Qla)¥(a) = Hia). (Bi4)

The necessary and sufficient conditions for the existence of unique solution of sysiem (B14) is satisfied, i.c.

1 Ka)

Aa)= Q) | =1 -K@)Qa)# 0 forall ae(~x,x), (B15)
Indeed, it can be proved that
iy Y (2)ab
[K(a)| < K(0)] = @+ VB
__V@Qmn
Q)= IQ(O)l—mV(m) ) (B16)
- VQab Vimn
Kie)2(@) <KOO = gy iy vim) + v ~ 2
In this special case when m = (1/b) and n = (1/a) we have
av/(ab)

m:m(l for a>b>0v (B”)

Therefore, A{a} # 0 for all values of a.
We finally obtain the solution of the system (B14)

Fla)~K(a)H(a)
1-K(e)Qla)
Hia) - Qla)F{a)

1-Ka)Qa) -

it is to be noted that y(a) and ${a) given by (B18) belong to Ly( — =, ») as well as L,{ - o, »), Therefore, the inverse of
these functions are given by the following

Y(a}=

$la)= (B18)

U - .
W)= — L [%,(a) cos (a In 1) - ¥(a) sin (a In )] da
T _ :
= L (®1(a) cos (a In 1) ~ Bofa) sin e In 1)] da (®19)
where ¥,(a) and &(a) are the real parts of ¥{a) and ¢(a) &(a) respectively and ¥y(a) and ®y(a) are the imaginary parts

of ¥(a) and &(a) respectively.

APPENDIX C

Evaluation of Fourier-Plancherel transform of the functions k(v) and gq(v)

In Appendix B the solution of special system of integral equations was derived. This solution for all admissible
boundary conditions depends strongly on the Fourier-Plancherel transforms of the kernel functions k({v) and g(s) given by
(B14). In this section, the Fourier-Plancherel transforms of these functions will be evaluated and is summarized in the
following theorem.

Theorem:
Let the constants g and b and the function k{v) be given such that

@ a>b>0
® K= rgreTTsTen
then the Fourier-Planchere! transform K(a) of K(v) in Ly{ - ®,®) is
K(a)= Ki{a)+ Kefa) = f; k(o) e du; &)
where

Ki(@) = sy [Hi(@)Gala) ~ Ha)Gia))

Koa) = = ez (Hi(@)Gi(@) + Hi@)Glo) (o
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chZa
Hya)= chra
chZa .
Hya}= Thea C3)
Gila) = Aa) sin (x,a) = V/(b) sin (x;a}
Gyla) = /(@) cos (x;a) - V/(b) cos (x,a) (Cd)
=m(l
=ln (a)
n=h (%) (o)}
Proof:
Consider the integral
Z c—lll
j:w f(2)dz= f Wdt (Co)
where ¢* is a rectangle having vertices at — R, R, R+ #f and — R + =i and R > max {{x, |x;)
The only poles of the integrand f(z) enclosed by the rectangle ¢* are
Zi=x+ x%
z =x,+.'12': ©n
where
i
xn=ln (—i—), x=In (3)
The residue of f(2) at 21 is
2 e-xl 3
Ilm (2= @) =~ 57— NPy T3 i (C8)
Similarly, the residue of f(z) at z3 is
2 blew + 3 C9
hm z-(»)= T(?—‘r), w=3~ia 9
By residue theorem,
i’ f(z)dz = 6{—’5,3 b2 e - g2 gri] 10)
The Lh.s. of (C10) can be written as
R ” -R ]
§ flzydz = f foyds+ [ fR+ipidy+ [ f(x+£1r}dx+[ f(-R+ipidy. €y
c* -R ] ] »

As R -, the second and fourth integrals in (C11) approach zero for a 0. To prove this, let us consider, for example, the
second integral of (C11)

- . e-(’ﬂ)l e |
IL IR+ i 03| 5 s e, a0 1)

and the result follows since the integral for « < 0 approaches zero as R tends to infinity. In a similar manner we can show
tstgal the fourth integral of (C11) for o <0 approaches zero as R—w,
ince

flx + i) = ~e**f(x)

and

Hx)y=kix)emie,
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We obtain,
K*a)= Kita)+ iKoa)

= j fixyde= ——"'—"«;-m-»-(b2 e¥ T — glesty 13

(I-e*"Ya" - b3

After separating real and imaginary parts of K*(a). the following results for a < 0 are obtained.

Kila)= [H\(2)Gxa) - H{a}G\(a)]

2
Vi2Xa*-bh
C14)

Kitay=- [H ()G (o) + Hya)Gyla)l.

—
VI(a® - b%)
In a similar manner, using the rectangle ¢~ in the lower half plane, the corresponding result K~(a) for a =0 can be
obtained.
These two results K*(a) and K~(a) can be combined and the final result can be written in the form

K{a)= K{a)+ iKy{a}

T

K@) = =g [Hi@)Gia) - Hia)Gila) €15)
Kya) = ’?/?275’-_#3 {Hi(a)Gy(a) + Hia)Gna)).

For tangential boundary conditions, the Fourier-Plancherel transform of the following functions have to be evaluated.

" _ eﬂll}c b>0 Ci6
(”)“(H_aze *)i+ b eh)' a> 4 {C16)

It can be proved that the Fourier-Plancherel transform of k*(v) is
K¥a)= KH{a}+ K$(a) (ol ¥)

where

Ki(a)= *ﬁ;”:;,—)[H;(a)aﬂa)w,(a)c:s(a)l

K(@) = ~ =5 (Hae)G8@) - Hi(@)Gia) (€18
G¥a) = aV(a) sin {x;a)~ bV(D) sin (x,0)
G¥la) = aV(a) cos (x;a) ~ bV(b) sin (x,a). {C19)

H(a) and Hy(a) are given by (C3) and x|, x, are given by (C5). . . _
The same method is used to determine the Fourier-Planchere! transforms of the functions g(v) and ¢*(v) and since this
is similar to the procedure given above, it will not be discussed.



